A team of security researchers has discovered a new malware evasion technique that could help malware authors defeat most of the modern antivirus solutions and forensic tools.
Dubbed Process Doppelgänging, the new fileless code injection technique takes advantage of a built-in Windows function and an undocumented implementation of Windows process loader.
Ensilo security researchers Tal Liberman and Eugene Kogan, who discovered the Process Doppelgänging attack, presented their findings today at Black Hat 2017 Security conference held in London.
Process Doppelgänging Works on All Windows Versions
Apparently, Process Doppelgänging attack works on all modern versions of Microsoft Windows operating system, starting from Windows Vista to the latest version of Windows 10.
Tal Liberman, the head of the research team at enSilo, told The Hacker New that this malware evasion technique is similar to Process Hollowing—a method first introduced years ago by attackers to defeat the mitigation capabilities of security products.
In Process Hollowing attack, hackers replace the memory of a legitimate process with a malicious code so that the second code runs instead of the original, tricking process monitoring tools and antivirus into believing that the original process is running.
Since all modern antivirus and security products have been upgraded to detect Process Hollowing attacks, use of this technique is not a great idea anymore.
On the other hand, Process Doppelgänging is an entirely different approach to achieve the same, by abusing Windows NTFS Transactions and an outdated implementation of Windows process loader, which was originally designed for Windows XP, but carried throughout all later versions of Windows.
Here’s How the Process Doppelgänging Attack Works:
Before going further on how this new code injection attack works, you need to understand what Windows NTFS Transaction is and how an attacker could leverage it to evade his malicious actions.
NTFS Transaction is a feature of Windows that brings the concept of atomic transactions to the NTFS file system, allowing files and directories to be created, modified, renamed, and deleted atomically.